Semantic Information and Derivation Rules for Robust Dialogue Act Detection in a Spoken Dialogue System
نویسندگان
چکیده
In this study, a novel approach to robust dialogue act detection for error-prone speech recognition in a spoken dialogue system is proposed. First, partial sentence trees are proposed to represent a speech recognition output sentence. Semantic information and the derivation rules of the partial sentence trees are extracted and used to model the relationship between the dialogue acts and the derivation rules. The constructed model is then used to generate a semantic score for dialogue act detection given an input speech utterance. The proposed approach is implemented and evaluated in a Mandarin spoken dialogue system for tour-guiding service. Combined with scores derived from the ASR recognition probability and the dialogue history, the proposed approach achieves 84.3% detection accuracy, an absolute improvement of 34.7% over the baseline of the semantic slot-based method with 49.6% detection accuracy.
منابع مشابه
Robust dialogue act detection based on partial sentence tree, derivation rule, and spectral clustering algorithm
A novel approach for robust dialogue act detection in a spoken dialogue system is proposed. Shallow representation named partial sentence trees are employed to represent automatic speech recognition outputs. Parsing results of partial sentences can be decomposed into derivation rules, which turn out to be salient features for dialogue act detection. Data-driven dialogue acts are learned via an ...
متن کاملDialogue act detection in error-prone spoken dialogue systems using partial sentence tree and latent dialogue act matrix
In a goal-oriented spoken dialogue system, the major aim of spoken language understanding is to detect the dialogue acts (DAs) embedded in a speaker’s utterance. However, errorprone speech recognition often degrades the performance of the SLU component. In this work, a DA detection approach using partial sentence trees (PSTs) and a latent dialogue act matrix (LDAM) is presented for spoken langu...
متن کاملA semantic tagging tool for spoken dialogue corpus
In this paper, we report our semantic tagging tool for spoken dialogue corpus. This tagging tool can acquire analysis rules using Transformation-based Learning (TBL) from small scale training corpus. It can learn dialogue act tagging rules and semantic frame tagging rules. The precisions are 72% in dialogue act tagging and 58% of semantic frame tagging in open test.
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011